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ABSTRACT 

We briefly review the current literature on batyon decay catalysis by 

cosmic strings, presenting a’summary of the main arguments for decay 

catalysis. 
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Introduction. 

Several years ago Callan’ and Rubakov? showed how it was possible for a grand unified 

monopole to catalyse proton decay, and that the catalysis would occur with an enhanced 

cross-section: the inverse square of the proton rather than the grand unified mass scale. 

This result had immediate cosmoiogical implications. Assuming a standard graze unified 

picture, monopoles would be produced in some primordial phase transition, these would 

then be able to catalyse baryon decay. The known baryon to entropy ratio then places 

constraints on the number density of such monopoles which are far more stringent than 

conventional bounds. Usually, inflation is invoked to explain the dilution of the monopole 

density. Cosmic strings’ are also topological defects of grand unified theories; t?ms like 

monopoles, they too can catalyse baryon decay. If however, one intends to use cosmic 

strings as a means of explaining structure formation, then inflation must not dilute the 

string network. Therefore the question of baryon decay becomes important: If cosmic 

strings, like monopoles, give an enhanced cross-section, then their density would also be 

severely constrained, and they could be ruled out as a means of forming structure. 

Baryon decay can be catalysed by grand unified topological defects, because in the 

core of such defects the grand unified symmetry is restored, and baryon number volating 

processes can occur. However, the baryon must be able to reach this core. Due to the 

spin of the baryon, there is a natural supression of its wave function near the core, thus, 

without any ‘long range force’ to attract it to the defect, we expect that the cross-section 

will be given at most by the geometrical cross-section of the defect, a grand unified cross- 

section. For the monopole, the long range force which leads to amplification is the coupling 

of the magnetic moment to the magnetic field. This enhances the wave function of the 

baryon near the core, and leads to an expected cross-section of the order of the baryon 

cross-section. At first sight, for strings it would appear that there is no long range force. 

The ‘magnetic’ fields either vanish (as in the Nielsen-Olesen string) or are perpendicular to 

the magnetic moment of the baryon. However, this reasoning is somewhat naive, and can 

break down if the string has fractional charge. In this case, a ‘long range’ Aharonov-Bohm 

effectsvs takes over, and enhancement does occur. 
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In this review, me present some recent arguments concerning enhancement or otherwise 

oi string catalysed baryon decay. We will only summa&e the arguments, referring the 

reader to the original literature for the dctsii. 

Catalysis in the quark picture. 

The first argument concerning cosmic string catalysis of baryon decay was due to 

Brandenberger, Davis and Matheson’. They considered a quark-string interaction, and 

calculated the cross-section using free field wave functions, multiplying by the ratio of the 

interacting wave function to the free wave functions to get the cross section in the praence 

of the gauge fields. 

In order to estimate the free iield catalysis cross-section, for the sake of simplicfty they 

considered the transition amplitude between an initial single quark state, In), and a single 

final lcpton state, (II. The interaction lagrangian allowing for baryon number violating 

processes is of the form 

ml+* (1) 

where we have supressed the internal SU(5) indices. Thus to first order in perturbation 

theory, one can represent the transition amplitude 

A=< fli>=e J d’l < bJP~lq > (2) 

where the spatial integral is over the core of the defect. Since WC are only interested in 

the dependence of the cross-section on the defect mass M and the fermion mass m, we 

count the relevant orders of magnitude. The gauge field introduces a factor of M, whereas 

integration ovcz the core gives M-s for the monopole, and M-s for the string. The sum 

over the spins in 47’$ gives a factor of m, whence one obtains 

d- 
&m6(‘)(Cpi - Ept) for the monopole, and 
+?z6 (4)(CPi - CPt) for the string. (3) 

-, 

The cross section is then given by 

uNVTmZ , 
-=~/+d~‘, 
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where the sum is taken over the final momenta. Thus 

for the monopole, and 

for the string. 

(5) 

Notice that both of these are grand unified cross sections. 

Now we examine the boundary conditions at the surface of the defect to see if there 

is any amplification of the fermion wave function near the core. Since it is A+ that is 

non-zero, if we write 

*l = 4yhFECT 
W+FREE ' 

(6) 

then the differential cross-section will become multiplied by A’. 

The key point that makes calculation of A2 non-trivial is that in the presence of a 

long range gauge field, the orbital angular momentum becomes modified: 

L=rx(p+eA), (7) 

thus the spectrum of eigenfunctions and eigenvdues of the Hamiltonian and J* may change. 

In the case of the monopole, the eigenvalues of angular momentum shift by eg = l/Z, 

and thus the adz&sable j values are integers. Therefore there exists a j = 0 partial wave 

which can penetrate the core. The lowest ‘free field’ mode on the other hand has a radid 

behaviour proportional to +, hence the overall amplification factor, A’, is (M/m)‘. 

For the string, A, = -;a,,,# in cylindrical polar coordinates, thus the component of 

J. is shifted by e/g. Conventionally we set e/g = 1, so the eigenfunctions are unchanged 

(although the eigenvslues ‘shift’ by 1). 

In order to see this more clearly, let us explicitly solve the Dirsc equation in the 

presence of the string: 

(? - mM = 0 (8) 

If one uses the representation 
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the Dirsc equation separates into two Z-component spinor equations, the positive energy 

one being of the form: 

(u,& + iu& - io.89 f :-4+(-i sin+, + i cos ~$cr+) - m)x = 0. w-0 

This has solutions: 

x* = ( 
Ji” +ik ~Jl(“,lF id > 

e-iwtein# 01) 

where Y = n + e/g. Now, in order to decide which solutions to choose one usually imposes 

regularity of the eigenfunctions at the origin. If e jg E Z, this uniquely specifies the x,,: 

Xn cc ( 
Jl4 

& J,“+,(@ > 
e--iwt ein* 

02) 

(where n = ini/n) and thus the dominant partial wave, n = -e/g, baa a behaviour 

7j~*$ cc 7- as r + 0. (13) 

The amplitude of the wave function is therefore unchanged, and there is no amplihstion 

factor. 

The conclusion of Brsndenberger et al. was therefore that the catalysis cross-section 

for cosmic strings was a grand unified cross-section. The corresponding proof for (integer 

charged) superconducting stringss is more subtle, but the same conclusion was shown to 

hold9. 

However the question later arose as to what would happen if cosmic strings were not 

integrally charged. In the case of monopoles, the Dirac quantisation condition impliu a 

fixed set of v&es for eg,, however, for strings, no such quantisation condition need hold, 

models can be found in which the ‘charge’ of the string is fiactiona16. In the context of the 

above calculation, e/g being fractional implies that regularity turns out to be too strong a 

requirement, as the Hamiltonian ceases to be self-adoint”““. Square integrabity on the 

other hand is too weak a requirement, since for the mode n = -N - 1, (where N is the 

greatest integer less than e/‘g) both eigenfunctions contain a divergent component, both 
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arc square integrable. yet including both violates self-adjointness of the Hamiltonian. In 

order to choose the correct xn, one needs to consider the boundq conditions at the core 

of the string. There is currently no entirely satisfactory resolution of this question, since it 

seems to depend on the composition of the interior of the corei’. If there exists an excited 

scalar field in the core, one obtains a different result than if only gauge fields are excited. 

For the sake of argument, we will impose square integrabillty of the wave function and 

finiteness of the spatial probability current at the origin as our boundary conditions, since 

this is independent of the core composition. With these boundary conditions, we obtain 

4Y% 2 
1 

.(‘-2-) 0 < l/2 
e---1) r2 > l/2. 

Thus 

?JY% STRING IT 
7-2P 0 < l/2 

~JYWFREE r--1+2- Q > l/2 

M’Q-2 a < 112 
Ma-‘” Q > l/2 

(14) 

05) 

(This coincides with Alford et al. who had a scalar condensate in the core of the string.) 

Therefore it would appear that fractionally charged cosmic strings can have a sig- 

nificant enhancement of the catalysis cross-section. We must stress that even if we had 

imposed different boundary conditions at the core of the string (thus choosing a different 

xn) this enhancement would still be present, if not in certain cases more marked. 

Cosmic string catalysed skyrmion decay. 

So far we have presented a high energy picture of baryon decay, however, in order to 

understand catalysis it is important also to develop a low energy picture. One such model 

was investigated I’ based on work by Callan and Witten]’ who examined a skyrmion decay 

process in the presence of a monopole. We will summari se the process for a string, showing 

that we are forced to consider a vortex model for the string in order to obtain catalysis in 

the string core. The analysis gives a heuristic explanation of the enhancement factor with 

monopoles, as we will show. 
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Let us first highlight the features of the Skyrme model relevant to the catalysis proce- 

dure. The Skyrme model is a sigma model with stable soliton solutions othervise known 

as skyrmions. In the case of two quark flavours (which we will be assuming here for sim- 

plicity), the pion field content is contained in an SU(2) field U = exp{g z.~}, where 

z = (ri,rr,ra) are the three generators of SU(2). The field space is thus isomorphic to 

S’. Since finiteness of the energy requires that U(g) -* eonst. as 1~1 + 00, we can think 

of a soliton field con.f$urstion as a map from compactified three-space (~‘U{oo} 2 Ss) 

to the three-sphere of SU(2). Such maps may be classified according to the homotopy 

equivalence class to which they belong. Since IIr(S ’ 2 23, we may conclude that so&on ) 

field ConSgurations are labelled uniquely by an integer value, NE (the baryon number), 

which is the degree of the map. In a dynamical theory, the continuity of the fields implies 

that N,g is a continuous function of time and hence constant. The baryon number may be 

more familiarly represented as the charge associated with the conserved baryon current 

Pp*Tr u-i a,url apuu-I a,u . > 

In the presence of electromagnetism, the model must be genera&cd to allow for the 

nucleon charge and magnetic moment interaction. Taking into account QCD anomalies, 

Wittenis showed that the baryon current becomes modified to 

B’ = By + ‘= --C”P”BY(A~TrQ(U-‘a,U + &UU-‘)I , 
8~3 (171 

where Q is the quark charge matrix (Q = iI, + $73). The new A,, dependent term is a 

divergence so provided there are no singularities in A,,, and that surface terms vanish, the 

baryon number is still integral. In terms of the topological picture presented previously, 

provided there are no singularities, U,,,(z) is still a map kom S’ * Ss and thus the 

classification of maps into equivalence classes labelled by baryon number still holds. 

For the case Callan and Witten considered, a skyrmion interacting with a Dirac 

monopole, the gauge potential is singular on the line 9 = r, although the electromag- 

netic flux is finite. This singularity is a gauge artefact, the Dirac string, which can readily 

be removed’s if one chooses two coordinate patches for JR’-(O), each with an associated 

.A,, relating the two different ‘branches’ of A,, by a gauge tranformation on the overlap. 



One includes the SU(2) field, U, in this picture by using the transformation induced by 

the gauge transformation on A,,. This gives a consistent, singularity free picture of the 

nucleon on the background field of the monopole. However, since there is a non-trivial 

transformation for U in the overlap of the two coordinate patches, in the classification of 

field configurations according to homotopy equivalence there is a shuf%ng of members of 

the baryon eqttivdence classes. In other words, baryon number is different. In particu- 

lar, Cdlan and Witten found that a pure ws radid configuration, the radial kink, carried 

baryon number 1. Since the wave functions of charged pions are suppressed near the core, 

but those of uncharged particles are not, the nucleon can now approach the monopole 

core by deforming into the radial kink. Th en, provided the boundary conditions at the 

monopole core eilow baryon non-conservation, the proton can decay. Thus, monopoles can 

catdyse skyrmion decay. 

We now turn to the case of a skyrmion interacting with a cosmic string. In contrast 

to the monopole, in this case the string has a well defined gauge field without invoking 

coordinate patches. Thus the gauge field for a cosmic string exhibits no singularities, the 

additional term in the baryon current is once more a total divergence, and baryon number is 

unchanged. Alternatively, if there ae no gauge singularities, the equivalence classes of the 

soliton maps are unchanged. We therefore expect that in this cue the radial kink will not 

carry baryon number (as was shown to be true in ref. 13). Rather like the monopole case, 

charged fields pick up extra “angular momentum” around the z-a& due to the presence of 

a non-zero A,. For the infinitesimally thin string, the radial part of the wave equation for 

the lowest angular momentum eigenstate tends to zero as least as quickly so p near p = 0. 

Therefore, without introducing core structure, we cannot obtain skyrmion catdysis. In 

order to be more physically realistic, we need to consider a vortex model for the string. To 

illustrate the salient features of skyrmion catalysis by cosmic strings it is only necessary to 

consider an abelian theory: the Nielsen-Olesen vortex I’. This corresponds to an in&site, 

straight static string aligned with the z-axis. In this case, we can choose a gauge in which 

f$ = qX(p)e’* ; A’ = +yo) - l]V’C$. w 
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This string has winding number one. Sear the origin, X and P take the form: 

X ccp ; P=1+0(p2) as p+o. 09) 

Using the asymptotic form for P in the Klein-Gordon equation implies that the radial 

equation for the lowest angular momentum eigenstate becomes 

P4PQ4P) = O(P’)VP(P), (20) 

allowing ‘p - const. as p + 0. Thus, on the scale of the core of the string, we need not 

have total suppression of charged particle wave functions. 

Clearly, as before, the radial kink cannot carry baryon number. However, this is no 

longer critical for we can have ail three pion fields approaching the core. Once the skyrmion 

is in contact with the core of the string, where the grand unified symmetry is essentially 

restored, the possibility of decay arises. 

One can explicitly show this by making the the nucleon field configuration depend on 

time: 

Ur~(g, t) = expjiF(r, t)&.~], (21) 

and allow F to change at the core. The skyrmion can then unwind, leaving a residual field 

configuration which is a topologicdly trivid excitation of the pion fields and dissipates. 

Thus strings can catdyse skyrmion decay. The picture however relics fundamentally 

on taking a vortex model for the string, i.e. one in which the string has a finite thickness. 

A model of the string with infinitesimal thickness (the wire model) gives no catdysis. A 

similar argument applies for superconducting strings: a wire model gives no catalysis, but 

a vortex model does. 

Notice that the monopole argument wes conducted exdusivel.~ within the apprcuima- 

tion of the Ditac monopole; the only place we needed a grand unified monopole was in 

invoking baryon number non-conserving boundary conditions. By contrast, a thick string 

or vortex model was required in order to get catalysis to occur at ail in the string picture. 

Thus in the monopole picture, the only scale we have is the skyrmion scde whereas the 

inescapability of the vortex model in the string case suggests that the reaction is occurring 
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on the scale of the string thus giving a grand unified cross-section. For more detailed 

arguments, see refs. 13 and 18. 

The skyrmion argument thus reinforces the quark scattering picture developed earlier, 

and provides an interesting alternative description of baryon decay. However, to date, no 

corresponding picture of decay for fractionally charged strings has been developed. 

To summarise: we have seen that in both the free quark and skyrmion pictures, 

cosmic strings and superconducting cosmic strings catdyse baryon decay with a grand 

unified cross-section. This constrasta with the monopole case, where the Callan-Rubakov 

effect indicates a cross-section on the scale of the proton. This difference can be understood 

physically in terms of the presence of a magnetic moment interaction which acts ar a ‘long 

range force’ in the case of the monopole. In addition, we have seen that non-integrally 

charged cosmic strings display some enhancement over their integrally charged cousins in 

the catalysis cross-section. 

These arguments illustrate well the current interplay between theoretical physics and 

cosmology. The catalysis of proton decay by strings could have ruled out the string model 

of galaxy formation had there been a large enhancement. Even with the current cross- 

sections, some restrictions can be placed on strings using baryogenesis boundsis. Inter- 

estingly, there are arguments that the conical structure of spacetime surrounding strings 

may further suppress the cross-section z”. This latter result could be particularly relevant 

for superconducting strings which have far stronger gravitational effects. In conclusion, 

these studies have shown a suprising amount of variety in cosmic string behaviour, and 

have further added to their interest as cosmologically viable objects. 
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